As Pleasure Unfolds: Hedonic Responses to Tempting Food

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Psychological Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>PSCI-09-1358.R2</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Research article</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>18-Jun-2010</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Hofmann, Wilhelm van Koningsbruggen, Guido; Utrecht University, Psychology Stroebe, Wolfgang; Utrecht University, Psychology Ramanathan, Suresh; University of Chicago Aarts, Henk; Utrecht University, Psychology</td>
</tr>
<tr>
<td>Keywords:</td>
<td>Self Control, Emotional Control, Food, Rewards, Health</td>
</tr>
</tbody>
</table>
As Pleasure Unfolds:
Hedonic Responses to Tempting Food

Wilhelm Hofmann
University of Würzburg
Germany

Guido M. van Koningsbruggen
Utrecht University
The Netherlands

Wolfgang Stroebe
Utrecht University
The Netherlands

Suresh Ramanathan
University of Chicago

Henk Aarts
Utrecht University
The Netherlands

Word count: 3,565 (text body) + 199 (footnotes) = 3,764
references: 40

Please address correspondence concerning this article to:

Wilhelm Hofmann
Department of Psychology
University of Würzburg
Röntgenring 10
97070 Würzburg
Germany
Phone: +49 (931) 312860
Fax: +49 (931) 312812
Email: hofmannw@psychologe.uni-wuerzburg.de
Abstract

Why do chronic dieters often violate their dieting goals? One possibility is that they experience stronger hedonic responses to tempting food than normal eaters. Here, we scrutinized hedonic processing in dieters and normal eaters (a) by manipulating food pre-exposure and (b) by assessing both immediate and delayed hedonic responses to tempting food with an adapted affect misattribution procedure. Without food pre-exposure, dieters showed less positive hedonic responses than normal eaters (Study 1). When pre-exposed to tempting food stimuli, however, dieters exhibited more positive delayed hedonic responses than normal eaters (Studies 1 and 2). Furthermore, delayed hedonic responding was meaningfully related to self-reported power of food and state cravings (Study 2). These findings suggest that dieters experience difficulties in down-regulating hedonic affect when in a “hot” state and that self-regulation research may benefit from a greater emphasis on temporal dynamics rather than static differences.

[144 Words]

Keywords: Self-Regulation, Hedonic Processes, Affect Regulation, Eating, Dietary Restraint
As Pleasure Unfolds: Hedonic Responses to Tempting Food

With the prevalence of overweight and obesity constantly on the rise, dieting has become the most important strategy to control weight in food-rich environments (Kruger, Galuska, Serdula, & Jones, 2004). Although chronic dieters, also referred to as restrained eaters (Herman & Polivy, 1980), are generally highly motivated to restrict food intake in order to control body weight, only few succeed in losing weight and in maintaining weight losses over significant periods of time (Mann et al., 2007; Stroebe, 2008). Precisely why dieters often fail to meet their dieting goals, however, has been the subject of continuous debate.

The Hedonic Response Hypothesis

One recent approach to this important matter proposes that eating is often driven by the automatic hedonic processing of food cues rather than by the homeostatic regulation of hunger per se (Lowe & Butryn, 2007; Pinel, Assanand, & Lehman, 2000). Specifically, dieters may experience stronger hedonic responses to highly palatable food cues. These hedonic responses are assumed to be responsible for attentional biases to tempting food cues (Papies, Stroebe, & Aarts, 2008), the emergence of food cravings and intrusive thoughts (Kavanagh, Andrade, & May, 2005; Papies, Stroebe, & Aarts, 2007), and the temporary inhibition of the long-term dieting goal (for a model, see Stroebe, Mensink, Aarts, Schut, & Kruglanski, 2008).

Central to this line of reasoning is the assumption that dieters show more positive hedonic responses to tempting food cues than normal eaters. However, previous research using explicit measures has often failed to find a difference in the self-reported evaluation of palatable food stimuli (Fedoroff, Polivy, & Herman, 1997; Stroebe et al., 2008) or has even found a devaluation of highly palatable food among dieters (e.g., Papies, Stroebe, & Aarts, 2008). It has been argued that hedonic reactions, due to their spontaneous, automatic nature may be better captured with the help of indirect measures (e.g., Hofmann, Fries, & Strack,
2009b). However, consistent with the self-report data mentioned above, research using indirect measures has yielded only inconclusive evidence for the hedonic response hypothesis, with two studies reporting more positive hedonic reactions among dieters (Hoefling & Strack, 2008; Veenstra & de Jong, in press), one study finding no difference between dieters and normal eaters (Roefs, Herman, Macleod, Smulders, & Jansen, 2005), and two studies finding more negative hedonic reactions to palatable food among dieters (Papies, Stroebe, & Aarts, 2009, Experiment 1, personal communication, May 4, 2010; Roefs & Jansen, 2002). How should be understand these seemingly divergent hedonic response findings?

A Two-Factor Approach to Hedonic Processing

In the present article, we argue that the assumption of a static difference between dieters and normal eaters that has guided previous research is too simple. We propose that, to understand hedonic responses in eating behavior—and probably other domains of self-regulation as well—we need to take into account the dynamic interplay of two crucial factors: pre-exposure and the time-course of hedonic responses. Pre-exposure concerns the (often disruptive) influence of the immediate stimulus environment on self-regulatory processes (e.g., Metcalfe & Mischel, 1999). In the eating domain for instance, it has been found that dieters are more likely to overeat after they have been pre-exposed to the sight, smell, or taste of tempting food cues (Fedoroff et al., 1997; Fedoroff, Polivy, & Herman, 2003; Herman & Mack, 1975; Jansen & van den Hout, 1991; Rogers & Hill, 1989). Research examining the potential causes of this overeating effect show that pre-exposure to tempting food words increases attentional bias for tempting food (Papies et al., 2008) and temporarily inhibits access to the dieting goal (Stroebe et al., 2008). These findings suggest that dieters may show different hedonic responses depending on whether they have been brought into a “hot state” by the presence of tempting food primes or not.¹

The second crucial factor is the time-course of the hedonic response. Previous research using indirect measures has exclusively focused on immediate hedonic reactions to stimulus
exposure. However, by just looking at the immediate hedonic response, an important piece of information is missing, namely how the mental apparatus deals with hedonic affect over time. Recent neuroscientific research suggests that evaluation is a fast and dynamic process that includes multiple iterative processing cycles even within the first second upon stimulus exposure (Cunningham, Zelazo, Packer, & Van Bavel, 2007). Iterative hedonic processing may lead to a maintenance or even to an amplification of hedonic responses given that attention is continuously allocated to the affective information and that no regulatory process is recruited (Kavanagh et al., 2005; Van Dillen & Koole, 2007). Conversely, hedonic responses may be down-regulated over time through the re-allocation of attention and through mechanisms of affect regulation which allow the psychological system to disengage from a tempting episode (Hofmann, Friese, & Roefs, 2009a).

Study 1

To test the proposed two-factor model, we assessed dieters’ and normal eaters’ immediate as well as delayed hedonic responses to tempting food stimuli as a function of pre-exposure. We hypothesized that, without pre-exposure, dieters’ dieting goal may be dominant (Stroebe et al., 2008) and successfully bias information processing, including the devaluation of goal-incompatible temptations (Aarts, Custers, & Holland, 2007; Myrseth, Fishbach, & Trope, 2009; Veling & Aarts, 2009). After pre-exposure to tempting food, however, dieters may become increasingly sensitive to the hedonic aspects of tempting food. As a consequence, they may have difficulties in down-regulating positive hedonic affect and exhibit prolonged hedonic processing over time when compared to normal eaters.

Furthermore, we assumed that this pattern of effects is specific for food stimuli and does not generalize to food-unrelated control stimuli.

Method

Participants and Procedure
Participants were 80 students from Utrecht University (46 female, 34 male; $M_{age} = 21.75$ years, $SD_{age} = 2.33$), who received either course credit or monetary compensation (approx. $5). They were assigned randomly to the food pre-exposure or the no pre-exposure condition. Afterwards, we unobtrusively measured immediate and delayed hedonic responses to tempting food with a modified version of the affect misattribution procedure (AMP; Payne, Cheng, Govorun, & Stewart, 2005). Finally, participants filled out the restraint scale.

Materials and Procedure

Food Pre-Exposure Manipulation. A lexical decision task was used to implement food pre-exposure experimentally as in Papies et al. (2008). In each trial of the task, participants were presented with a word or non-word target stimulus and they had to indicate quickly via keypress whether the presented stimulus was a word or a non-word. Participants in the pre-exposure condition ($n = 39$) were presented with 15 palatable food words (e.g., pizza, chocolate, cake), 15 neutral words (e.g., book), and 30 non-words. Participants in the no pre-exposure condition ($n = 41$) were presented with 30 neutral words and 30 non-words. Presentation order of stimuli was randomized across the 60 trials of the task.

Hedonic Response over Time. Building on the AMP (Payne et al., 2005), we developed a new procedure to capture immediate versus delayed hedonic responses to tempting food stimuli (see Hofmann et al., 2009a, for a first application to assess general affect regulatory capacity). In the standard trial of the task, a prime stimulus was presented for 100 ms, followed by an interstimulus interval (ISI) of 100 ms (a blank screen), followed by the presentation of a Chinese pictograph for 200 ms, followed by a mask which remained until the participant responded with a pleasantness judgment of the pictograph (see Figure S1 in the supporting material available on-line). The standard trial employing such a short ISI is typically used in order to measure immediate affective reactions to the primes (misattributed to the pictograph), with a higher proportion of pleasant judgments indicating a more positive hedonic response (Payne et al., 2005). We added a second trial type in which the ISI was
increased to 1,000 ms while keeping all other aspects of the task constant (see supplementary Figure S1). Comparing responses to identical stimuli at the short versus the long ISI informs us about how immediately activated affect unfolds over time. Specifically, a decrease in positive responses from the short to the long ISI is indicative of a down-regulation of immediate affect over time.

The task consisted of 90 trials presented in random order. As primes, we used 15 palatable food pictures selected from a pilot test (N = 24) and included 15 positive and 15 negative food-irrelevant stimuli from the International Affective Picture System (Lang, Bradley, & Cuthbert, 2005). To allow for a specificity analysis (see below), food and positive control stimuli were matched according to 9-point scale ratings of valence (Mfood = 6.31; SD = 0.32; Mpositive = 6.32; SD = 0.31) and arousal (Mfood = 5.41; SD = 0.40; Mpositive = 5.31; SD = 0.39). Each stimulus was shown twice in each ISI condition and always paired with a new pictograph. As in Payne, Burkley, and Stokes (2008), participants responded to the pictograph with the index and middle fingers of both hands placed on 4 keys labeled -2 (very unpleasant), -1 (slightly unpleasant), +1 (slightly pleasant), and +2 (very pleasant). For data analysis, we excluded responses below 150 ms and above 3500 ms upon presentation of the pictograph.

Restraint Scale. Dietary restraint was assessed with the Concern for Dieting subscale of the Revised Restraint Scale (Herman & Polivy, 1980). The mean sum score across the 6 items with a response scale from 0 to 3 was 6.60 (SD = 3.40; α = .74).

Results and Discussion

To simplify interpretation, responses in the AMP were recoded to a 1 to 4 scale with higher scores indicating more positive responses. A GLM analysis on hedonic responses with stimulus type (food vs. matched positive control stimuli), ISI (100 ms vs. 1,000 ms) as within-subjects factors, food pre-exposure (yes vs. no) as between-subjects factor, and dietary restraint as a continuous predictor (with means for dieters and normal eaters estimated at +1
and -1 SDs, respectively) revealed two significant interactions: a three-way interaction between ISI, pre-exposure, and restraint, $F(1, 76) = 4.14, p = .045, \eta_p^2 = .05$, which was qualified by a four-way interaction between stimulus type, ISI, pre-exposure, and restraint, $F(1, 76) = 5.51, p = .022, \eta_p^2 = .07$. To decompose these two interactions, we investigated the effects of ISI and restraint separately for food and positive control primes and separately for the no pre-exposure and the food pre-exposure condition.

Regarding food stimuli, in the no pre-exposure condition there was only a main effect of restraint, $F(1, 39) = 7.88, p = .008, \eta_p^2 = .17$. As can be seen from Figure 1 (left panel), dieters harbor less positive hedonic reactions to palatable food than normal eaters when not pre-exposed. In the pre-exposure condition, however, there was a significant interaction between ISI and restraint, $F(1, 37) = 6.56, p = .015, \eta_p^2 = .15$, and no main effects. Figure 1 shows that hedonic responses of dieters (+1 SD) and normal (-1 SD) eaters did not differ at the short ISI of 100 ms, $t(37) = .42, p = .673, \eta_p^2 = .005$. However, dieters’ hedonic responses were significantly larger than those of normal eaters at the long ISI, $t(37) = 2.15, p = .038, \eta_p^2 = .11$. This dissociation of the delayed response was due to a significant decline in hedonic responding for normal eaters over time, $t(37) = -2.79, p = .008, \eta_p^2 = .17$. In contrast, dieters maintained high levels of positive responding over time, $t(37) = 0.74, p = .46, \eta_p^2 = .02$.

Regarding positive control stimuli, there was neither a significant main effect of ISI or restraint, nor was there a significant interaction between ISI and restraint in either condition, all $Fs < 1.05$ (see Figure 1, right panel), indicating that the present findings are specific to food stimuli.

Viewed in concert, the results from Study 1 suggest that, without pre-exposure to food, dieters appear to devalue palatable food primes effectively even at very short time frames, indicating implicit self-control as the default (Fishbach, Friedman, & Kruglanski, 2003). When pre-exposed to palatable food, however, dieters show elevated hedonic
responses that persist over time whereas normal eaters show signs of down-regulation over time. Thus, dieters’ exposure to tempting food invokes a “hot” state during which they become increasingly sensitive – and vulnerable – to the hedonic aspects of food.

Study 2

The aim of Study 2 was to examine more closely the time-pattern that emerged under food pre-exposure in Study 1. Specifically, we wanted to investigate whether the observed difference between dieters’ and normal eaters’ hedonic responses generalizes further across time. We therefore included a third ISI of 1,500 ms in the modified AMP. Moreover, we wanted to investigate whether the assessment of delayed hedonic responses has explanatory power beyond its link with dietary restraint. Specifically, we examined whether delayed hedonic responding can be meaningfully linked to self-reported urges toward palatable food.

Method

Participants

Participants were 48 students from Utrecht University (27 female, 21 male; $M_{age} = 20.96$ years, $SD_{age} = 3.85$), who received either course credit or monetary compensation (approx. $5). Two participants were identified as outliers in boxplots and excluded from further analyses, one of them scored outside the normal range on the restraint measure ($SD > 2.9$), and one reported not to have eaten for more than 18 hours ($SD > 4.1$).

Materials and Procedure

All participants were pre-exposed to food cues through the lexical decision task from Study 1. Afterwards, their hedonic responses to tempting food, matched positive control pictures, and negative pictures were assessed with the modified AMP. However, in Study 2, we added a third ISI of 1,500ms to the AMP in order to trace hedonic responding further over time, resulting in a total of 135 trials. Participants then filled out the restraint scale ($M = 6.45$; $\alpha = .75$). They also completed the Power of Food Scale (PFS; Lowe et al., 2009 $\alpha = .87$; e.g., “If I see or smell a food I like, I get a powerful urge to have some”), a recently proposed
measure of the sensitivity to tempting food cues in the environment, as well as the State Food Cravings Questionnaire (FCQ-S; Cepeda-Benito, Gleaves, Williams, & Erath, 2000; \(\alpha = .96 \); e.g., “If I had tasty food right now, it would be hard to stop eating.”) with the five subscales “intense desire to eat” \((\alpha = .95) \), “anticipation of positive reinforcement” \((\alpha = .90) \), “anticipation of relief from negative feelings” \((\alpha = .88) \), lack of control over eating” \((\alpha = .84) \), and “craving as a physiological state” \((\alpha = .87) \). The PFS and the FCQ-S have both been shown to predict problematic eating behavior in field and laboratory settings (Cepeda-Benito et al., 2000; Lowe & Butryn, 2007; Vander Wal, Johnston, & Dhurandhar, 2007).

Results and Discussion

A GLM analysis revealed a significant interaction among stimulus type, ISI, and dietary restraint, \(F(2, 88) = 4.47, p = .014, \eta_p^2 = .09 \). To unravel this interaction, we investigated the effects of ISI and restraint on hedonic reactions separately for food and positive control primes.

Regarding food primes, a significant interaction between ISI and restraint emerged, \(F(2, 88) = 3.29, p = .042, \eta_p^2 = .07 \), while there were no significant main effects. As can be seen from Figure 2, dieters and normal eaters did not differ in their hedonic response at the short ISI of 100 ms, \(t(44) = -.12, p = .908, \eta_p^2 = .001 \). However, dieters’ hedonic responses were significantly larger than those of normal eaters at the delayed ISIs of 1,000 ms, \(t(44) = 2.22, p = .032, \eta_p^2 = .10 \), and 1,500 ms, \(t(44) = 2.84, p = .007, \eta_p^2 = .16 \). Analogous to Study 1, this dissociation of delayed responses when pre-exposed to tempting food was due to a significant decline in hedonic responding for normal eaters from the 100 ms ISI to the 1,000 ms ISI, \(t(44) = 3.16, p = .003 \), and to the 1,500 ms ISI, \(t(44) = 2.63, p = .012 \), respectively. In contrast, and replicating the results from Study 1, dieters maintained high levels of positive responding over time when comparing the short to the two delayed ISIs, \(t(44) = 0.35, p = .73 \), and \(t(44) = 0.43, p = .67 \), respectively. Regarding positive control primes, there was neither a
significant main effect of ISI, nor restraint (both Fs < 1), nor was there a significant
interaction between ISI and restraint, $F(2, 88) = 1.45, p = .24$, indicating again that the present
findings are specific to food stimuli.

Next, we correlated hedonic food responses in the AMP with self-reported power of
food and the state food cravings total scale and subscales separately for the three different
ISIs. As can be seen from Table 1, correlations generally increased from the short to the
longest ISI such that elevated positive responses to tempting food at the 1,500 ms ISI were
substantially associated with a higher self-reported power of food, stronger desire to eat,
stronger positive reinforcement from eating, positive relief from eating, and less control over
eating.

To investigate whether late hedonic responding (ISI = 1,500 ms) can partially explain
the relationship between dietary restraint and power of food in our sample, $r = .445, p = .002$,
we conducted a mediation analysis as recommended by Preacher and Hayes (2004). Results
showed that the combined effect of restraint on delayed hedonic responses, $\beta = .35, p = .016$,
and of hedonic responses on power of food scores, $\beta = .51, p = .002$, was significant, $\beta = .16$,
$p < .05$, establishing mediation (MacKinnon, Lockwood, Hoffman, West, & Sheets, 2002). A
similar analysis involving FCQ-S (total) scores as dependent variable also showed that the
combined product of the two significant direct effects ($\beta = .45 \times \beta = .43$) was reliable, $\beta = .19$,
$p < .05$, indicating mediation. These analyses provide an intriguing link between dietary
restraint and subjective experiences of urges and desires. They directly support our
assumption that a failure to down-regulate hedonic affect over time may be one of the primary
reasons underlying the propensity to overeat when tempted.

General Discussion

The present findings provide novel insights into when and why dieters may have
difficulties to resist the allure of tempting food. Study 1 showed that without pre-exposure,
dieters exhibited less positive hedonic responses than normal eaters indicating successful
devaluation of tempting food at both short and long inter-stimulus intervals. In contrast, when
pre-exposed to palatable food stimuli, dieters showed continued elevated hedonic responses,
and differed markedly from normal eaters who showed down-regulation over time. Study 2
replicated this finding and, by extending the interstimulus interval, demonstrated that the
observed discrepancy remains stable for at least a certain amount of time. These results show
that dieters are able to effectively regulate their hedonic responses to food as a result of
having the goal to diet, but that pre-exposure to food evokes a “hot” state in which the down-
regulation of hedonic responses is substantially impaired.

These findings are consistent with a goal-conflict model of eating (Stroebe et al.,
2008). According to this model, restrained eaters’ dieting goal successfully biases information
processing, leading to a devaluation of goal-incompatible food. However, when a “hot” state
is induced through the repeated exposure to tempting food, the dieting goal is inhibited and
hedonic processing prevails. In contrast to dieters, normal eaters are not chronically biased by
a dieting goal and thus appear to be hedonically drawn toward tempting food objects under
normal conditions. However, when pre-exposed to palatable food stimuli normal eaters, in
contrast to dieters, showed reduced hedonic responding over time. This noteworthy effect
may be part of a functional mechanism to disengage from stimuli that have already had a
repeated influence so as to keep the organism open to the flexible pursuit of potential
alternative goals (Jostmann & Koole, 2009).

As our correlational and mediation analyses from Study 2 imply, dieters’ failure to
down-regulate hedonic affect when tempted may be the key mechanism in the development of
more “elaborated” food cravings and desires (Kavanagh et al., 2005) and may pave the way
for unhealthy eating behavior. Our findings thus accord well with the recently proposed
notion of “hedonic hunger” (Lowe & Butryn, 2007) by providing experimental evidence that
it is precisely this prolonged responsiveness to the pleasurable aspects of food that may pose
dieters at risk of unhealthy eating in present day’s food-rich environments.
The present findings also support the notion of relative automatic, implicit forms of self-control through the devaluation and/or inhibition of tempting stimuli (e.g., Fishbach et al., 2003; Fishbach & Shah, 2006; Hofmann, Deutsch, Lancaster, & Banaji, 2010). Results in the no pre-exposure condition suggest that, under default conditions, dieters can successfully counteract temptation through devaluation, even at an early interstimulus interval. However, the observed pattern in the food pre-exposure condition indicates that this regulatory mechanism may be substantially weakened through the repeated confrontation with tempting cues, rendering dieters increasingly vulnerable to the hedonic aspects of food. This clearly fits the everyday observation that chronic dieters are often strong, but not invincible. Future research may help to further elucidate the boundaries under which otherwise beneficial mechanisms may be offset by specific circumstances or stimulus constellations.

Finally, our results may help to reconsolidate previous research into the hedonic response hypothesis by incorporating situational factors such as pre-exposure and temporal dynamics that might escape the currently prevailing research focus on immediate automatic responses. Taking such a dynamical and context-dependent perspective, future self-regulation research from domains such as drug abuse, sexual risk-taking, aggression, and emotion regulation may likewise profit from a closer look on how immediate affect unfolds over time.
As Pleasure Unfolds

References

Authors’ Note

This research was supported by a grant from the German Science Foundation (HO 4175/3-1) and the German Academic Exchange Service to Wilhelm Hofmann and by grant 121510001 from the Netherlands Organization for Scientific Research to Wolfgang Stroebe and Henk Aarts.
Footnotes

1 Such a conditional view may help to explain some of the inconsistencies reported earlier. For instance, whereas the studies cited as reporting more negative evaluations of food by dieters did not involve a pre-exposure to food, Höfling and Strack (2008), noted in their methods section that, before completing the implicit measure in their study “all subjects dealt with other food items (pictures) in another irrelevant task” (p. 684), involving the visual presentation of palatable food stimuli during a judgment task (A. Höfling, personal communication, May 4, 2010). In a similar vein, Veenstra and de Jong (in press) note that “an exogenous cueing task was administered (before the rest of the tasks)”, involving the presentation of high-fat food pictures and an explicit assessment of state cravings (see Veenstra, de Jong, Koster, & Roefs, 2010, for details). In both studies, these presentations may have acted as a pre-exposure manipulation. Thus, the degree of pre-exposure to palatable food may at least partially account for empirically observed variations in the difference between dieters’ and normal eaters’ hedonic responses.

2 Including gender in GLM analyses as a further factor did not affect any of the statistical conclusions drawn, neither in Study 1 nor Study 2.
<table>
<thead>
<tr>
<th>Hedonic responses to tempting food (AMP)</th>
<th>Short ISI (100 ms)</th>
<th>Long ISI (1,000 ms)</th>
<th>Long ISI (1,500 ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power of food (PFS)</td>
<td>0.16</td>
<td>0.26</td>
<td>0.47</td>
</tr>
<tr>
<td>Food cravings questionnaire (FCQ-S)</td>
<td>0.17</td>
<td>0.29</td>
<td>0.43</td>
</tr>
<tr>
<td>Desire to eat</td>
<td>0.10</td>
<td>0.16</td>
<td>0.31</td>
</tr>
<tr>
<td>Positive reinforcement</td>
<td>0.27</td>
<td>0.28</td>
<td>0.43</td>
</tr>
<tr>
<td>Positive relief from eating</td>
<td>0.14</td>
<td>0.34</td>
<td>0.38</td>
</tr>
<tr>
<td>Lack of control</td>
<td>0.19</td>
<td>0.31</td>
<td>0.50</td>
</tr>
<tr>
<td>Craving as physiological state</td>
<td>0.06</td>
<td>0.18</td>
<td>0.26</td>
</tr>
</tbody>
</table>

Note. N = 46. AMP = affect misattribution procedure; ISI = interstimulus interval.

Correlations printed in bold are significant at $p < .05$ (two-sided). Correlations in italics are marginally significant at $p < .10$ (two-sided).
Figure Captions

Figure 1. Hedonic responses to tempting food and matched positive control stimuli in Study 1 as a function of food pre-exposure (yes vs. no), interstimulus interval (short vs. long), and dietary restraint (dieters vs. normal eaters, $+1\ SD$ vs. $-1\ SD$ of the mean of the dietary restraint scale, respectively). Error bars reflect the standard error of the mean.

Figure 2. Hedonic responses to tempting food stimuli and matched positive control stimuli in Study 2 under pre-exposure as a function of interstimulus interval (100 ms, 1,000 ms, 1,500 ms), and dietary restraint (dieters vs. normal eaters, $+1\ SD$ vs. $-1\ SD$ of the mean of the dietary restraint scale, respectively). Error bars reflect the standard error of the mean.
Short ISI (100ms) Long ISI (1,000ms) Short ISI (100ms) Long ISI (1,000ms) Short ISI (100ms) Long ISI (1,000ms) Short ISI (100ms) Long ISI (1,000ms)

No Pre-Exposure Food Pre-Exposure No Pre-Exposure Food Pre-Exposure

Food Stimuli Control Stimuli

Hedonic Response (AMP)

□ Restrainted (-1 SD) □ Unrestrained (+1 SD)
As Pleasure Unfolds

2.25 2.50 2.75 3.00 3.25

Short ISI (100ms) Long ISI (1,000ms) Long ISI (1,500ms)

Food Pre-Exposure Food Stimuli

Restrained (-1 SD) Unrestrained (-1 SD)

Hedonic Response (AMP)

Short ISI (100ms) Long ISI (1,000ms) Long ISI (1,500ms)

Food Pre-Exposure Control Stimuli